Contents

- 1. General Information (Materials and Methods).
- 2. Synthesis of 4/iso-4, 5/iso-5, and 3 (Scheme 1).
- 3. Synthesis of 6, 7, and 1. (Scheme 2).
- 4. Synthesis of 8, 9, and 10 (Scheme 3).
- 5. Molecular packing structures with ORTEP drawing of 3 (Fig. S1).
- 6. Molecular packing structures with ORTEP drawing of 1 (Fig. S2).
- 7. Molecular packing structures with ORTEP drawing of 8 (Fig. S3).
- 8. Optimized structures of 1, 3, and 8 (Fig. S4).
- 9. Optimized structures of (a) 1 and (b) 3 with D₂ symmetry, calculated at the B3LYP/
 6-31G(d,p) level of theory (Fig. S5).
- **10.** The energy difference between D_2 and C_{2h} symmetry of the DFT-optimized structures for 1 and 3 calculated at the B3LYP/6-31G(d,p) level of theory (Table S1).
- 11. CVs of 1 in CH₂Cl₂ (1.0 mM) including 50 mM NBu₄BF₄ as a supporting electrolyte under argon at 25 °C (working electrode: Pt) (Fig. S6).
- **12.**¹H and ¹³C NMR spectra for all new compounds. (Fig. S7-S26).
- 13. Data of DFT calculations for 1, 3, and 8.

1. General Information (Materials and Methods). Unless otherwise noted, all reactants or reagents including dry solvents were obtained from commercial suppliers and used as received. Solvents for spectrophotometry purchased from commercial suppliers were used for absorption and emission spectra. All reactions were carried out under an argon or a nitrogen atmosphere in dried glassware using standard vacuum-line technique, unless otherwise noted. All work-up operation and purification procedures were carried out with reagent-grade solvent in air, and analytical thin layer chromatography was carried out on Merck silica 60F₂₅₄ pre-coated plates. The developed chromatogram was analyzed by UV lamp (254 nm or 354 nm). Flash column chromatography was carried out with silica gel 60 N (Kanto Chemical Co.). All melting points were recorded on the melting point apparatus of "Stanford Research Systems OptiMelt" and are not corrected. IR spectra were reported with a JASCO FT/ IR-6000 infrared spectrometer and the data are expressed in cm⁻¹. High-resolution mass spectra (HRMS) were determined on the basis of TOF (time of flight)-MS (MADI-TOF or LCMS-IT-TOF), and DART (Direct Analysis in Real Time)-MS. Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECZ400S (1H 400 MHz and ¹³C 100 MHz) spectrometer. Chemical shifts for ¹H NMR are expressed in parts per million (ppm) relative to CHCl₃ (7.26), CH₂Cl₂ (5.32), DMSO (2.50). Chemical shifts for ¹³C NMR are expressed in ppm relative to CDCl₃ (77.0), CD₂Cl₂ (53.8), [D6]-DMSO (39.5). Data are reported as follows: chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad), coupling constants (Hz), and integration. All calculations were conducted using a Gaussian 16 suite program (G16RevC.02).^[24] Optimization was performed at the B3LYP/6-31G(d,p). Harmonic vibration frequency analysis was conducted with the optimized structures at the same level of theory to verify all stationary points as local minima (with no imaginary

2/48

frequency). The computation was carried out using the General Projects on supercomputer "Flow" at Information Technology Center, Nagoya University.

- 2. Synthesis of 4/*iso*-4, 5/*iso*-5, and 3 (Scheme 1).
 - 1. For 4/iso-4, dimethyl 3,6,11,14-tetra-tert-butyldibenzo[g,p]chrysene-1,9-

dicarboxylate/dimethyl 3,6,11,14-tetra-tert-

butyldibenzo[*g*,*p*]chrysene-1,8-dicarboxylate. Under an argon atmosphere, to a solution of **2**/*iso*-**2** (30.8 g, 43.3 mmol) in dry

Et₂O (770 mL) at -78 °C was added *n*-BuLi (100 mL, 156 mmol, 1.56 M in hexane) dropwise over 5 min. After the mixture was stirred at -78 °C for 15 min, dimethyl carbonate (18.2 mL, 217 mmol) was added over 10 min. After stirred at -78 °C for 0.5 h, the reaction mixture was allowed to warm to room temperature, and conducted over 2 h. The reaction was guenched with 3 M ag. HCl (300 mL) at 0 °C. The aqueous phase was extracted with toluene (50 mL x 3), combined organic phases were washed with brine (80 mL), dried over Na₂SO₄, and concentrated *in* vacuo to give crude products. Purification by short-plugged silica-gel column chromatography (hexane/toluene, 1:4) yielded 15.8 g of white (colorless) solid materials (55%, $4/iso-4 = \sim 1:1$). Data of 4/iso-4: Rf value 0.23 (hexane/EtOAc, 9/1); M.p. 250 °C (dec.); ¹H NMR (400 MHz, CDCl₃) 8.78 (d, *J* = 2.0 Hz, 2H), 8.62 (d, *J* = 2.0 Hz, 2H), 8.61 (d, J = 2.0 Hz, 2H), 8.45 (d, J = 2.0 Hz, 2H), 8.04 (d, J = 8.6 Hz, 2H), 8.03 (d, J = 8.6 Hz, 2H), 7.86 (d, J = 2.0 Hz, 2H), 7.81 (d, J = 2.0 Hz, 2H), 7.59 (dd, J = 2.0, 8.6 Hz, 4H), 4.05 (s, 6H), 4.04 (s, 6H), 1.47-1.39 (m, 72 H) ppm; ¹³C NMR (100 MHz, CDCl₃) 173.3, 173.1, 150.3, 150.2, 149.1, 149.0, 131.2, 130.84, 130.80, 130.3, 130.21, 130.18, 130.06, 129.0, 128.1, 127.49, 127.46, 127.2, 127.1, 127.01, 126.97, 126.93, 126.7, 126.0, 125.6, 125.2, 124.8, 124.0, 123.8, 53.07, 53.05, 35.52, 35.47 (two peaks are overlapped), 35.43, 31.84, 31.82 (two peaks are overlapped), 31.80 ppm; MS (DART-TOF) m/z: 669 [MH]+; IR (neat): 2952, 1718

(C=O), 1599, 1432, 1240, 1141, 882 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₆H₅₃O₄ [MH]+: 669.3944, found: 669.3924.

2. For 5/iso-5, 3,6,11,14-tetra-tert-butyldibenzo[g,p]chrysene-1,9-dicarbonyl dichloride/

3,6,11,14-tetra-*tert*-butyldibenzo[*g*,*p*]chrysene-1,8-dicarbonyl dichloride. Under an argon atmosphere, to a suspension of potassium *tert*-butoxide (23.9 g, 213 mmol) in dry THF (206 mL)

at 0 °C was added water (0.98 mL, 54.6 mmol). After the mixture was stirred at 0 °C for 5 min, the starting esters (16.6 g, 24.8 mmol) were added. The reaction was conducted at 70 °C for 2 h, and quenched with 3 M aq. HCl (206 mL) at 0 °C. The aqueous phase was extracted with EtOAc (50 mL x 3), and the combined organic phases were washed with brine (100 mL x 1), dried over Na₂SO₄, and concentrated *in vacuo* to give crude products (15.5 g, quant., isomeric molar ratio ~1:1) as whitish brown solid materials. The sample was provided in next step without further purification.

Under an argon atmosphere, to the solution of starting dicarboxylic acids (15.5 g, 24.2 mmol) in sulfurous dichloride (125 mL, 1.72 mol) at room temperature was added catalytic amounts of DMF over 1 min. After stirred at room temperature for 0.5 h, the mixture was concentrated *in vacuo* to give crude products (16.5 g, quant., isomeric molar ratio ~1:1) as yellowish-brown solid materials. The sample was provided in the next step without further purification. Data of **5***/iso*-**5**: ¹H NMR (400 MHz, CDCl₃) 8.86 (d, *J* = 1.9 Hz, 2H), 8.63 (d, *J* = 1.9 Hz, 2H), 8.62 (d, *J* = 1.9 Hz, 2H), 8.41 (d, *J* = 1.9 Hz, 2H), 8.25 (d, *J* = 8.6 Hz, 4H), 8.04 (d, *J* = 1.9 Hz, 2H), 7.98 (d, *J* = 1.9 Hz, 2H), 7.69 (dd, *J* = 8.6, 1.9 Hz, 4H), 1.50-1.41 (m, 72H) ppm; ¹³C NMR (100 MHz, CDCl₃) 172.2, 172.1, 151.5, 151.2, 149.5, 149.3, 135.7, 135.3, 131.7, 130.4, 130.3, 130.22, 130.17, 129.9, 129.2, 129.1, 128.9, 128.8, 126.5, 126.3, 126.2, 126.1, 126.0, 125.8, 125.4, 125.3, 124.8 (two peaks are overlapped),

4 / 48

124.5, 35.7, 35.63, 35.61, 35.57, 31.78 (two peaks are overlapped), 31.75 (two peaks are overlapped) ppm; MS (DART-TOF) *m/z*: 676 [M]+; IR (neat): 2956, 1770 (C=O), 933, 742, 727, 607 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₄H₄₆Cl₂O₂ [M]+: 676.2875, found: 676.2862.

3. For **3**, 2,6,9,13-tetra-*tert*-butyldiindeno[7,1,2-*ghi*:7',1',2'-*pqr*]chrysene-4,11-dione.

Under an argon atmosphere, to a solution of the starting acid chlorides (16.3 g, 24.0 mmol) in dry CH_2Cl_2 (220 mL) at 0 °C was added AlCl₃ (8.32 g, 63.4 mmol). After stirred at 0 °C for 0.5 h, the reaction was quenched with H₂O (120 mL). The aqueous phase was extracted with CHCl₃ (100 mL x 3), and the combined organic

phases were washed with brine (100 mL x 1), dried over Na₂SO₄, and concentrated *in vacuo* to give crude products. Purification by silica-gel column chromatography (hexane/CHCl₃, 1:1) gave 12.2 g of **3** (84%) as yellow solid materials. Data of **3**: Rf value 0.42 (hexane/toluene, 1:4); M.p. > 350 °C; ¹H NMR (400 MHz, CDCl₃) 9.06 (s, 4H, H-1), 8.06 (s, 4H, H-3), 1.57 (s, 36H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃) 194.7 (C-4), 153.4 (C-2), 137.8 (C-3a), 133.8 (C-3), 128.8 (C-14b), 127.9 (C-14c), 127.0 (C-3a¹), 121.7 (C-1), 36.6 (\underline{C} (CH₃)₃), 32.3 (CH₃) ppm; MS (DART-TOFMS) *m*/*z*: 605 [MH]⁺; IR (neat): 2952, 1714 (C=O), 1363, 1204, 877, 774 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₄H₄₅O₂ [MH]⁺: 605.3420, found: 605.3397; Anal. Calcd. for C₄₄H₄₄O₂; C, 87.38; H, 7.33. Found: C, 87.46; H, 7.25.

- 3. Synthesis of 6, 7, and 1. (Scheme 2).
 - For 6, 2',6',9',13'-tetra-*tert*-butyldispiro[[1,3]dithiane-2,4'-diindeno[7,1,2-*ghi*:7',1',2'*pqr*]chrysene-11',2"-[1,3]dithiane]. Under an argon atmosphere, to a solution of 3 (2.0 g, 3.3 mmol) in dry CH₂Cl₂ (500 mL) was added 1,3-propanedithiol (3.3 mL, 33 mmol) and boron trifluoride etherate (6.7 mL, 53 mmol). After stirred at room temperature for 30 min, the mixture was quenched with water (200 mL). The

5 / 48

aqueous layer was extracted with CHCl₃ (50 mL x 3), and combined organic phases were washed with brine (100 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo* to give 2.9 g of crude products. Purification by short-plugged silica-gel column chromatography

(hexane/toluene, 1:1) gave 1.8 g (70%) of **6** as white (colorless) solid materials. (**CAUTION**: All the glass-apparatus were thoroughly washed with aq. 1% v/v sodium hypochlorite of NaClO for the deodorization). Data of **6**: Rf value 0.50 (hexane/CH₂Cl₂, 1:1); M.p. > 300 °C (dec.); ¹H NMR (400 MHz, CDCl₃) 9.11 (s, 4H, H-1'), 8.18 (s, 4H, H-3'), 3.51 (t, J = 5.7 Hz, 8H, H-4), 2.54-2.53 (m, 4H, H-5), 1.63 (s, 36H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃) 151.7 (C-2'), 148.3 (C-3a'), 132.6 (C-14c'), 129.9 (C-14b'), 127.6 (C-3a¹), 122.9 (C-3'), 119.3 (C-1'), 55.7 (C-2), 36.5 (\underline{C} (CH₃)₃), 32.7 (CH₃), 28.3 (C-4), 25.1 (C-5) ppm; MS (DART-TOFMS) *m/z*: 785 [MH]+; IR (neat) 2958, 1595, 1415, 1271, 1203, 754, 731, 665 cm⁻¹; HRMS (DART-TOF) calcd. for C₅₀H₅₇S₄: 785.3338 [MH]+, found: 785.3329.

2. For 7, 2,6,9,13-tetra-tert-butyl-4,11-dihydrodiindeno[7,1,2-ghi:7',1',2'-pqr]chrysene.

Under an argon atmosphere, **6** (450 mg, 0.57 mmol) and dry CH₂Cl₂ (324 mL) was charged to a 500 mL flask, and then the mixture was stirred for 20 min (white (colorless) cloudy). With the aid of mild dryer-heating for 5 min, the mixture changed to colorless solution. To the mixture was added sodium iodide (8.5 g, 57 mmol) and trimethylsilyl chloride (7.2 mL, 57 mmol), and then

the reaction was monitored at room temperature for 89 h. To the reaction mixture was added H_2O (200 mL), and it was followed by subsequent addition of satd. aq. $Na_2S_2O_3$ (200 mL). The aqueous layer was extracted with CHCl₃ (50 mL x 3), and combined organic phases were washed with brine (100 mL), dried over Na_2SO_4 ,

filtered, and concentrated *in vacuo* to give 1.2 g of crude products. Purification by short-plugged silica-gel column chromatography (hexane/CHCl₃, 19:1) gave 242 mg (74%) of **7** as white (colorless) solid materials. Data of **7**: Rf value 0.71 (hexane/ toluene, 2:1); M.p. 214-219 °C; ¹H NMR (400 MHz, CDCl₃) 9.17 (s, 4H, H-1), 7.92 (s, 4H, H-3), 4.43 (s, 12H, CH₂), 1.63 (s, 36H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃) 150.7 (C-2), 142.0 (C-3a), 136.8 (C-14c), 129.9 (C-14b), 127.5 (C-3a¹), 120.8 (C-3), 120.2 (C-1), 37.9 (CH₂), 36.4 (*C*(CH₃)₃), 32.8 (CH₃) ppm; MS (DART-TOFMS) *m/z*: 577 [MH]⁺; IR (neat): 2952, 1599, 1412, 1360, 1276, 1214, 846, 756, 732, 665 cm⁻¹; HRMS (DART-TOF) calcd. for C₄₄H₄₉: 577.3829 [MH]⁺, found: 577.3802; Anal. Calcd. for C₄₄H₄₈; C, 91.61; H, 8.39. Found: C, 91.68; H, 8.58. **3.** For **1**, 4,11-dihydrodiindeno[7,1,2-*ghi*:7',1',2'-*pqr*]chrysene. Under an argon

atmosphere, to a suspension of **7** (1.4 g, 2.4 mmol) in dry benzene (38 mL) was added aluminum chloride (770 mg, 5.8 mmol). After stirred at room temperature for 0.5 h, the reaction mixture was quenched with H₂O (60 mL) at 0 °C. The aqueous layer was extracted with CH₂Cl₂ (30 mL x 3), and combined

organic phases were washed with brine (60 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo* to give 1.2 g of crude products. Purification by short-plugged silica-gel column chromatography (hexane/CH₂Cl₂, 9:1) gave 624 mg (73%) of **1** as white (colorless) solid materials. Data of **1**: Rf value 0.35 (hexane/toluene, 9:1); M.p. 268-274 °C; ¹H NMR (400 MHz, CDCl₃) 9.11 (dd, *J* = 6.4 Hz, 6.4 Hz, 4H, H-2), 7.85-7.81 (m, 8H, H-1, H-3), 4.47 (s, 4H, CH₂) ppm; ¹³C NMR (100 MHz, CDCl₃) 142.1 (C-3a), 138.7 (C-3a¹), 129.1 (C-14b), 128.2 (C-14c), 127.7 (C-2), 124.6 (C-3), 122.1 (C-1), 37.8 (CH₂) ppm; MS (DART-TOFMS) *m/z*: 353 [MH]+; IR (neat) 2923, 1494, 1442, 1418, 1393, 1085, 1027, 937, 821, 767, 708, 619, 475 cm⁻¹; HRMS

(DART-TOF) calcd. for C₂₈H₁₇: 353.1325 [MH]+, found: 353.1314; Anal. Calcd. for C₂₈H₁₆; C, 95.42; H, 4.58. Found: C, 95.43; H, 4.43.

- **4.** Synthesis of **8**, **9**, and **10** (Scheme 3).
 - 1. For 8, 2,6,9,13-tetra-tert-butyl-4,4,11,11-tetrakis(4-methoxyphenyl)-4,11-

dihydrodiindeno[7,1,2-*ghi*:7',1',2'*pqr*]chrysene. To a suspension of **3** (2.4 g, 4.0 mmol) in anisole (23 mL) was added methanesulfonic acid (MsOH, 1.6 mL, 24 mmol) at room temperature, and the mixture was stirred for 5 min. The reaction was

conducted at 120 °C, and the starting 3 was totally disappeared on TLC monitoring in 8 h. The reaction was guenched at 0 °C with saturated agueous NaHCO₃ (45 mL) (pH > 7). The aqueous layer was extracted with toluene (10 mL x 3), washed with brine (30 mL), dried over Na₂SO₄, and filtered, and concentrated *in vacuo* to give 3.6 g of yellow solid materials. Purification by short-plugged silica-gel column chromatography (hexane/toluene, 1:2) afforded 2.8 g of 8 (72%) as pale yellow solid materials. Data of 8: Rf value 0.40 (hexane/EtOAc, 4/1); M.p. 286 °C (dec.); ¹H NMR (400 MHz, CDCl₃) 9.09 (s, 4H, H-1), 7.77 (s, 4H, H-3), 7.29 (d, *J* = 9.0 Hz, 8H, phenyl C-2), 6.80 (d, J = 9.0 Hz, 8H, phenyl C-3), 3.76 (s, 12H, phenyl CH₃), 1.55 (s, 36H, CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃) 158.6 (phenyl C-4), 151.3 (C-2), 150.3 (C-3a), 138.5 (phenyl C-1), 134.5 (C-14c), 130.2 (C-14b), 129.7 (phenyl C-2), 127.7 (C-3a¹), 121.5 (C-3), 121.0 (C-1), 113.9 (phenyl C-3), 67.1 (C-4), 55.5 (phenyl CH₃), 36.5 (<u>C</u>(CH₃)₃), 32.7 (CH₃) ppm; MS (DART-TOF) *m*/*z*: 1002 [MH]+; IR (neat): 2949, 1603, 1503, 1244, 1173, 1025 cm⁻¹; HRMS (DART-TOF) calcd. for C₇₂H₇₃O₄ [MH]+: 1001.5509, found: 1001.5497; Anal. Calcd. for C₇₂H₇₂O₄; C, 86.36; H, 7.25. Found: C, 86.37; H, 6.97.

2. For 9, (4,4,11,11-tetrakis(4-methoxyphenyl)-4,11-dihydrodiindeno[7,1,2-ghi:7',1',2'-

pqr]chrysene). To **8** (2.5 g, 2.5 mmol) in benzene (50 mL) was added AlCl₃ (3.2 g, 24 mmol), and the reaction was conducted for 0.5 h. The starting **8** was totally disappeared

on TLC monitoring. To the mixture was added aqueous HCI (3 M, 60 mL) at 0 °C. The mixture was transferred into a separatory funnel, and the aqueous phase was extracted with toluene (30 mL x 3), washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated *in vacuo* to give 2.4 g of crude products. Purification by short-plugged silica-gel column chromatography (hexane/toluene, 1:4) afforded 1.6 g of **9** (83%) as whitish yellow solid materials. Data of **9**: Rf value 0.45 (hexane/EtOAc, 2:1); M.p. > 350 °C; ¹H NMR (400 MHz, CDCl₃) 9.05 (d, *J* = 8.2 Hz, 4H, H-1), 7.81 (dd, *J* = 8.2, 7.3 Hz, 4H, H-2), 7.71 (d, *J* = 7.3 Hz, 4H, H-3), 7.28 (d, *J* = 8.8 Hz, 8H, phenyl H-2), 6.79 (d, *J* = 8.8 Hz, 8H, phenyl H-3), 3.76 (s, 12H, phenyl CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃) 158.8 (phenyl C-4), 150.6 (phenyl C-1), 137.9 (C-3a), 136.4 (C-3a¹), 129.5 (phenyl C-2), 129.4 (C-14b), 128.5 (C-14c), 128.4 (C-3), 125.3 (C-2), 122.9 (C-1), 114.0 (phenyl C-3), 66.8 (C-4), 55.5 (phenyl CH₃) ppm; MS (DART-TOF) *m/z*: 608 [M-OMe-OMe-PhOMe]⁺, 777 [MH]⁺; IR (neat) 3006, 2830, 1606, 1505, 1247, 1173, 1033, 753, 722, 593 cm⁻¹; HRMS (DART-TOF) calcd for C₅₆H₄₁O₄: 777.3005 [MH]⁺, found; 777.3002.

3. For 10, (4,4',4",4"'-(4,11-dihydrodiindeno[7,1,2-ghi:7',1',2'-pqr]chrysene-4,4,11,11-

tetrayl)tetraphenol). Under an argon atmosphere, to **9** (1.4 g, 1.8 mmol) in dry CH₂Cl₂ (15 mL) at 0 °C was added BBr₃ (11 mL, 11 mmol, 1 M CH₂Cl₂ solution) dropwise over 10 min. After stirred at 0 °C for 15 min,

9 / 48

the reaction mixture was allowed to warm to ambient temperature, and conducted over 1 h. The mixture was quenched with water (15 mL). The aqueous layer was extracted with EtOAc (20 mL x 3). The combined organic phases were washed with brine (100 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to give 1.1 g of crude products as greenish white (colorless) materials. Purification by shortplugged silica-gel column chromatography (hexane/acetone, 1:1) afforded 930 mg of **10** in 72% yield as brownish white (colorless) materials. Data of **10**: Rf value 0.55 (hexane/EtOAc, 1:4); M.p. > 350 °C; ¹H NMR (400 MHz, DMSO-*d*₆) 9.35 (s, 4H, phenyl OH), 9.09 (d, J = 8.4 Hz, 4H, H-1), 7.90 (dd, J = 8.4, 7.2 Hz, 4H, H-2), 7.80 (d, J = 7.2 Hz, 4H, H-3), 7.08 (d, J = 8.7 Hz, 8H, phenyl H-3), 6.67 (d, J = 8.7 Hz, 4H, H-3)8H, phenyl H-2) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) 156.2 (phenyl C-1), 150.3 (phenyl C-4), 135.24 (C-3a), 135.17 (C-3a¹), 128.8 (phenyl C-3), 128.7 (C-14b), 128.3 (C-14c), 127.1 (C-2), 124.7 (C-3), 123.2 (C-1), 115.2 (phenyl C-2), 66.0 (C-4) ppm; MS (DART-TOF) *m/z*: 721 [MH]+; IR (neat) 3523 (OH), 3472 (OH), 2956, 1506, 1170, 832, 784, 725, 592, 517 cm⁻¹; HRMS (DART-TOF) calcd for C₅₂H₃₃O₄: 721.2379 [MH]+, found; 721.2386.

5. Molecular packing structures with ORTEP drawing of 3 (Figure S1).

Figure S1. Molecular packing structures with ORTEP drawing of **3** (the hydrogen atoms are omitted for clarity): (a) top view (*tert*-butyl groups are removed for ease of viewing); (b) side view from a ketone moiety, with a description of interlayer distance of 3.461 Å; (c) side view from the *cove* (*tert*-butyl groups are removed); (d) four hydrogen bondings between two CH₂Cl₂ molecules and three compounds of **3**, at a distance of 2.216 Å (*tert*-butyl groups are removed); (e) zigzag-packing view from the *cove* (CH₂Cl₂ molecules are removed); (e) zigzag-packing view from the *cove* (CH₂Cl₂ molecules are removed).

6. Molecular packing structures with ORTEP drawing of 1 (Figure S2).

Figure S2. Molecular packing structures with ORTEP drawing of **1** (the hydrogen atoms are omitted for clarity): (a) layered-view from a slanting upper part; (b) side view from five-membered rings; (c) top view; (d) side view from cove regions with a description of interlayer distances, 3.457 Å and 3.324 Å.

7. Molecular packing structures with ORTEP drawing of 8 (Figure S3).

Figure S3. Molecular packing structures with ORTEP drawing of **8** (the hydrogen atoms not engaged in (d) are omitted for clarity): (a) top view (*tert*-butyl groups and anisole moieties are removed for ease of viewing); (b) side view from a cove region with a description of interlayer distances of 9.849 Å and 7.057 Å; (c) side view from a five-membered ring; (d) magnified viewing of the part enclosed with the blue line of (b), with description of selected distances that mean CH---pi interactions.

Figure S4. Optimized structures and bond lengths of (a) **1** and (b) **3** with C_{2h} symmetry and (c) **8** with C_i symmetry (B3LYP/6-31G(d,p)), (d) torsion angles, determined by the four carbon atoms of C¹, C², C³, and C⁴.

9. Optimized structures of (a) 1 and (b) 3 with D₂ symmetry, calculated at the B3LYP/
6-31G(d,p) level of theory (Fig. S5).

Figure S5. Optimized structures of (a) **1** and (b) **3** with D_2 symmetry, calculated at the B3LYP/6-31G(d,p) level of theory.

10. The energy difference between D_2 and C_{2h} symmetry of the DFT-optimized structures

for **1** and **3** calculated at the B3LYP/6-31G(d,p) level of theory (Table S1).

Table S1. The energy difference between D_2 and C_{2h} symmetry of the DFT-optimized structures for **1** and **3** calculated at the B3LYP/6-31G(d,p) level of theory.

Point group	Energy differer	Energy difference [kcal/mol] [a]		
r onn group	1	3		
D ₂	-1.87	-1.94		
$C_{ m 2h}$	0	0		

^[a] The data after zero-point vibrational energy correction were used.

11. CVs of **1** in CH₂Cl₂ (1.0 mM) including 50 mM NBu₄BF₄ as a supporting electrolyte under argon at 25 °C (working electrode: Pt) (Fig. S6).

Figure S6. CVs of **1** in CH₂Cl₂ (1.0 mM) including 50 mM NBu₄BF₄ as a supporting electrolyte under argon at 25 °C (working electrode: Pt), where the scan rates are (a) 50 mV/s, (b) 100 mV/s, (c) 200 mV/s, (d) 500 mV/s, and (e) 1000 mV/s, respectively.

spectrum in CDCl₃).

Fig. S10 Compound 2/iso-2 in 50:50 molara ratio (13C NMR

spectrum in CDCl₃).

NMR spectrum in CDCl₃).

Fig. S14 Compound 4/iso-4 in 50:50 molara ratio (13C

NMR spectrum in CDCl₃).

H₃CO₂C .CO₂CH₃

H₃CO

NMR spectrum in CDCl₃).

Fig. S16 Compound 5/iso-5 in 50:50 molara ratio (13C

NMR spectrum in CDCl₃).

HO

ЮH

13. Data of DFT calculations for 1, 3, and 8.

DFT Calculation: All calculations were conducted using a Gaussian 16 suite program (G16RevC.01). Optimization was performed at the B3LYP/6-31G(d,p) level of theory. Harmonic vibration frequency analysis was conducted with the optimized structures at the same level of theory to verify all stationary points as local minima (with no imaginary frequency).

Cartesian Coordination of Optimized Structures: Cartesian coordinates for 1,

		Coordinates (Angstroms)		
Center Number	Atomic Type	Х	Y	Z
1	6	-0.12907	2.438894	0.706572
2	6	0	0	0.720485
3	6	0.04405	1.273079	-1.45926
4	6	0.04405	1.273079	1.459259
5	6	0.297828	1.519826	2.836045
6	6	0.029434	3.954344	2.549695
7	6	-0.12907	2.438894	-0.70657
8	6	-0.1428	3.758835	1.193141
9	6	0.297828	1.519826	-2.83605
10	6	-0.1428	3.758835	-1.19314
11	6	0.269708	2.814173	-3.34895
12	6	0.269708	2.814173	3.348952
13	6	0.029434	3.954344	-2.5497
14	6	-0.24969	4.70741	0
15	6	0.129074	-2.43889	-0.70657
16	6	0	0	-0.72049
17	6	-0.04405	-1.27308	1.459259
18	6	-0.04405	-1.27308	-1.45926

optimized at the B3LYP/6-31G(d,p) level of theory.

-2.83605	-1.51983	-0.29783	6	19
-2.5497	-3.95434	-0.02943	6	20
0.706572	-2.43889	0.129074	6	21
-1.19314	-3.75884	0.142798	6	22
2.836045	-1.51983	-0.29783	6	23
1.193141	-3.75884	0.142798	6	24
3.348952	-2.81417	-0.26971	6	25
-3.34895	-2.81417	-0.26971	6	26
2.549695	-3.95434	-0.02943	6	27
0	-4.70741	0.249693	6	28
3.506996	0.721353	0.577216	1	29
2.996423	4.944671	0.036824	1	30
-3.507	0.721353	0.577216	1	31
-4.40733	2.952398	0.472254	1	32
4.407329	2.952398	0.472254	1	33
-2.99642	4.944671	0.036824	1	34
0	5.258001	-1.20022	1	35
0	5.461022	0.546944	1	36
-3.507	-0.72135	-0.57722	1	37
-2.99642	-4.94467	-0.03682	1	38
3.506996	-0.72135	-0.57722	1	39
4.407329	-2.9524	-0.47225	1	40
-4.40733	-2.9524	-0.47225	1	41
2.996423	-4.94467	-0.03682	1	42
0	-5.258	1.200216	1	43
0	-5.46102	-0.54694	1	44

Cartesian Coordination of Optimized Structures: Cartesian coordinates for 3,

optimized at the B3LYP/6-31G(d,p) level of theory.

		Coordinates (Angstroms)		
Center Number	Atomic Type	Х	Y	Z
1	8	-5.83844	-0.76329	0
2	6	-2.40466	-0.35791	0.708022
3	6	-2.40466	-0.35791	-0.70802
4	6	-3.71502	-0.46642	1.198809
5	6	-2.84672	0.068187	3.38131
6	6	0	0	-0.72486
7	6	-1.27418	-0.07502	1.462225
8	6	-1.56048	0.176209	2.841588
9	1	-0.77267	0.523318	3.490192
10	6	-1.27418	-0.07502	-1.46223
11	6	-3.94497	-0.28196	2.541139
12	1	-4.95305	-0.34426	2.937633
13	6	-3.71502	-0.46642	-1.19881
14	6	-4.63211	-0.61245	0
15	6	-2.84672	0.068187	-3.38131
16	6	-3.94497	-0.28196	-2.54114
17	1	-4.95305	-0.34426	-2.93763
18	6	-1.56048	0.176209	-2.84159
19	1	-0.77267	0.523318	-3.49019
20	6	-3.14564	0.364911	4.865555
21	6	-3.14564	0.364911	-4.86556
22	6	-3.76868	-0.89174	5.520349
23	1	-4.69831	-1.19287	5.02917
24	1	-3.99902	-0.69555	6.573313
25	1	-3.07767	-1.73988	5.476236
26	6	-4.14525	1.543252	4.962613
27	1	-3.72703	2.448889	4.511512
28	1	-4.37334	1.760471	6.011934

	29	1	-5.09008	1.324357	4.457379
	30	6	-1.88792	0.743147	5.667266
	31	1	-1.15167	-0.06615	5.671563
	32	1	-2.16283	0.941832	6.707873
	33	1	-1.40804	1.647036	5.277564
	34	6	-3.76868	-0.89174	-5.52035
	35	1	-3.07767	-1.73988	-5.47624
ľ	36	1	-3.99902	-0.69555	-6.57331
	37	1	-4.69831	-1.19287	-5.02917
	38	6	-4.14525	1.543252	-4.96261
	39	1	-5.09008	1.324357	-4.45738
	40	1	-4.37334	1.760471	-6.01193
	41	1	-3.72703	2.448889	-4.51151
	42	6	-1.88792	0.743147	-5.66727
	43	1	-1.40804	1.647036	-5.27756
	44	1	-2.16283	0.941832	-6.70787
	45	1	-1.15167	-0.06615	-5.67156
	46	8	5.83844	0.763289	0
	47	6	2.404662	0.357907	-0.70802
	48	6	2.404662	0.357907	0.708022
	49	6	3.715018	0.466415	-1.19881
	50	6	2.846722	-0.06819	-3.38131
	51	6	0	0	0.724858
	52	6	1.274184	0.075018	-1.46223
	53	6	1.56048	-0.17621	-2.84159
	54	1	0.772673	-0.52332	-3.49019
	55	6	1.274184	0.075018	1.462225
	56	6	3.944973	0.28196	-2.54114
	57	1	4.953045	0.344257	-2.93763
	58	6	3.715018	0.466415	1.198809
1.64					

	59	6	4.63211	0.612449	0
	60	6	2.846722	-0.06819	3.38131
	61	6	3.944973	0.28196	2.541139
	62	1	4.953045	0.344257	2.937633
	63	6	1.56048	-0.17621	2.841588
	64	1	0.772673	-0.52332	3.490192
	65	6	3.145644	-0.36491	-4.86556
	66	6	3.145644	-0.36491	4.865555
	67	6	3.768677	0.891744	-5.52035
	68	1	4.698307	1.192869	-5.02917
	69	1	3.999018	0.695554	-6.57331
	70	1	3.07767	1.739877	-5.47624
	71	6	4.145249	-1.54325	-4.96261
	72	1	3.727028	-2.44889	-4.51151
	73	1	4.373344	-1.76047	-6.01193
	74	1	5.090076	-1.32436	-4.45738
	75	6	1.887918	-0.74315	-5.66727
	76	1	1.151672	0.066147	-5.67156
	77	1	2.162826	-0.94183	-6.70787
	78	1	1.408038	-1.64704	-5.27756
	79	6	3.768677	0.891744	5.520349
	80	1	3.07767	1.739877	5.476236
	81	1	3.999018	0.695554	6.573313
	82	1	4.698307	1.192869	5.02917
	83	6	4.145249	-1.54325	4.962613
	84	1	5.090076	-1.32436	4.457379
	85	1	4.373344	-1.76047	6.011934
	86	1	3.727028	-2.44889	4.511512
	87	6	1.887918	-0.74315	5.667266
	88	1	1.408038	-1.64704	5.277564
- 14					

89	1	2.162826	-0.94183	6.707873
90	1	1.151672	0.066147	5.671563

Cartesian Coordination of Optimized Structures: Cartesian coordinates for 8,

optimized at the B3LYP/6-31G(d,p) level of theory.

		Coordinates (Angstroms)		
Center Number	Atomic Type	Х	Y	Z
1	8	-6.91705	0.788699	5.619633
2	8	-8.5167	-0.54736	-3.88626
3	6	-2.43725	-0.66016	0.217793
4	6	-2.41787	0.747742	0.156645
5	6	-3.75845	-1.12768	0.267665
6	6	-5.35625	0.236684	1.766988
7	6	-1.25355	1.478565	-0.07683
8	6	-3.97874	-2.47658	0.107106
9	1	-4.98827	-2.87439	0.110235
10	6	-7.93782	-0.89514	-1.53007
11	1	-8.86265	-1.41186	-1.30215
12	6	0.01076	0.722812	-0.02586
13	6	-1.57503	-2.82042	-0.19555
14	1	-0.77311	-3.48453	-0.47332
15	6	-1.48661	2.844744	-0.40753
16	1	-0.66302	3.46286	-0.72482
17	6	-3.90144	2.596196	-0.09973
18	1	-4.89513	3.030985	-0.12418
19	6	-5.79011	-0.03188	-0.74207
20	6	-3.7261	1.253983	0.150328
21	6	-1.29738	-1.44148	0.032931

-0.15525	-3.337	-2.87421	6	22
-2.81812	-0.42036	-7.6735	6	23
-0.41262	3.402129	-2.76922	6	24
0.365592	0.082716	-4.72678	6	25
-0.51325	-0.69748	-6.99889	6	26
0.481579	-1.06568	-7.22714	1	27
-0.79664	4.875305	-3.02428	6	28
-2.04681	0.426747	-5.54139	6	29
-2.26809	0.9372	-4.61046	1	30
-0.43717	-4.82382	-3.17759	6	31
2.873472	-0.5086	-4.92347	6	32
2.746229	-1.26341	-4.15563	1	33
3.250316	1.418785	-6.89932	6	34
3.369308	2.172692	-7.66849	1	35
1.986556	1.198583	-6.34988	6	36
1.151923	1.786057	-6.71993	1	37
-3.06798	0.242345	-6.46421	6	38
-4.07223	0.603911	-6.26847	1	39
4.34057	0.663456	-6.45161	6	40
5.876384	1.764347	-7.91337	6	41
6.943775	1.700774	-8.13032	1	42
5.310284	1.565822	-8.83283	1	43
5.640429	2.776904	-7.56121	1	44
-1.67473	-4.93542	-4.10116	6	45
-1.53043	-4.4077	-5.04795	1	46
-1.88222	-5.98629	-4.33328	1	47
-2.56103	-4.51272	-3.61715	1	48
4.140256	-0.30329	-5.45969	6	49
4.991579	-0.88523	-5.12196	1	50
-0.71758	-5.65219	-1.91124	6	51

52 53 54 55 55 56 57	1 1 1 6 1 1 1 1	-1.36908 -2.18883 -1.22745 -1.73053 -1.05433 -1.97382	-5.28832 -6.69342 -5.6475 5.643981 5.675152	-1.59645 -0.9111 0.136332 -1.1189
53 54 55 56 57	1 1 6 1 1 1 1	-2.18883 -1.22745 -1.73053 -1.05433 -1.97382	-6.69342 -5.6475 5.643981 5.675152	-0.9111 0.136332 -1.1189
54 55 56 57	1 6 1 1 1	-1.22745 -1.73053 -1.05433 -1.97382	-5.6475 5.643981 5.675152	0.136332
55 56 57	6 1 1 1	-1.73053 -1.05433 -1.97382	5.643981 5.675152	-1.1189
56	1 1 1	-1.05433 -1.97382	5.675152	-0 2596
57	1	-1.97382	0.077004	-0.2330
	1		6.677984	-1.38408
58		-1.1928	5.205845	-1.96607
59	6	-3.93382	4.932859	-2.04818
60	1	-3.45532	4.438788	-2.90017
61	1	-4.13212	5.973942	-2.32735
62	1	-4.89801	4.445311	-1.87903
63	6	-3.88788	-5.44445	0.790013
64	1	-3.25097	-5.38977	1.679052
65	1	-4.11979	-6.49908	0.602829
66	1	-4.8275	-4.9347	1.021349
67	6	-3.7243	5.598369	0.379346
68	1	-4.68137	5.134914	0.635053
69	1	-3.92079	6.644872	0.119911
70	1	-3.09671	5.582341	1.276317
71	6	-9.74983	-1.21859	-3.68785
72	1	-9.59998	-2.25815	-3.36866
73	1	-10.2571	-1.21053	-4.6538
74	1	-10.3774	-0.70561	-2.94749
75	8	6.917048	-0.7887	-5.61963
76	8	8.516697	0.547358	3.886264
77	6	2.437254	0.660159	-0.21779
78	6	2.417871	-0.74774	-0.15665
79	6	3.758446	1.127676	-0.26767
80	6	5.356252	-0.23668	-1.76699
81	6	1.253551	-1.47857	0.076831

82	6	3.978736	2.476579	-0.10711
83	1	4.988267	2.874393	-0.11024
84	6	7.937819	0.89514	1.530068
85	1	8.86265	1.411855	1.302152
86	6	-0.01076	-0.72281	0.025864
87	6	1.575031	2.820416	0.195551
88	1	0.773114	3.484525	0.473316
89	6	1.486609	-2.84474	0.40753
90	1	0.663021	-3.46286	0.72482
91	6	3.901437	-2.5962	0.099733
92	1	4.895131	-3.03099	0.124179
93	6	5.790108	0.031877	0.742068
94	6	3.7261	-1.25398	-0.15033
95	6	1.297379	1.441477	-0.03293
96	6	2.874207	3.337004	0.15525
97	6	7.673498	0.420362	2.81812
98	6	2.769216	-3.40213	0.412615
99	6	4.726775	-0.08272	-0.36559
100	6	6.998887	0.697476	0.513247
101	1	7.227142	1.065677	-0.48158
102	6	3.024284	-4.87531	0.79664
103	6	5.54139	-0.42675	2.046806
104	1	4.610461	-0.9372	2.268089
105	6	3.177588	4.823823	0.437168
106	6	4.923469	0.508604	-2.87347
107	1	4.155632	1.263414	-2.74623
108	6	6.899317	-1.41879	-3.25032
109	1	7.668494	-2.17269	-3.36931
110	6	6.349884	-1.19858	-1.98656
111	1	6.719929	-1.78606	-1.15192

	112	6	6.464208	-0.24235	3.067975
	113	1	6.268474	-0.60391	4.072228
	114	6	6.451614	-0.66346	-4.34057
	115	6	7.913368	-1.76435	-5.87638
Î	116	1	8.130316	-1.70077	-6.94378
	117	1	8.832829	-1.56582	-5.31028
Î	118	1	7.561208	-2.7769	-5.64043
	119	6	4.101158	4.935421	1.674726
Î	120	1	5.047952	4.407703	1.530426
	121	1	4.33328	5.986285	1.882215
Î	122	1	3.617145	4.512721	2.561034
	123	6	5.459686	0.303288	-4.14026
Î	124	1	5.121964	0.885227	-4.99158
	125	6	1.911244	5.652185	0.717583
	126	1	1.369077	5.288317	1.596449
	127	1	2.188827	6.693422	0.911102
	128	1	1.227451	5.647496	-0.13633
	129	6	1.730533	-5.64398	1.1189
	130	1	1.054334	-5.67515	0.2596
ĺ	131	1	1.973818	-6.67798	1.384079
	132	1	1.192804	-5.20585	1.966066
ĺ	133	6	3.933815	-4.93286	2.048179
	134	1	3.45532	-4.43879	2.900168
ĺ	135	1	4.132123	-5.97394	2.327353
	136	1	4.89801	-4.44531	1.879031
	137	6	3.88788	5.444451	-0.79001
	138	1	3.250972	5.389765	-1.67905
	139	1	4.119787	6.499076	-0.60283
	140	1	4.827496	4.934695	-1.02135
	141	6	3.724298	-5.59837	-0.37935
- 6					

142	1	4.681373	-5.13491	-0.63505
143	1	3.920785	-6.64487	-0.11991
144	1	3.096707	-5.58234	-1.27632
145	6	9.749832	1.218592	3.687852
146	1	9.59998	2.258152	3.36866
147	1	10.25707	1.210534	4.653797
148	1	10.37744	0.70561	2.947487